线程池

[TOC]

优势

  • 降低资源消耗。通过重复利用已创建的线程降低线程创建和销毁造成的消耗。
  • 提高响应速度。当任务到达时,任务可以不需要的等到线程创建就能立即执行。
  • 提高线程的可管理性。线程是稀缺资源,如果无限制的创建,不仅会消耗系统资源,还会降低系统的稳定性,使用线程池可以进行统一的分配,调优和监控。

线程池的使用

1 线程池的创建

通过ThreadPoolExecutor来创建一个线程池。

1
2
new ThreadPoolExecutor(corePoolSize, maximumPoolSize,
keepAliveTime, milliseconds,runnableTaskQueue, threadFactory,handler);

  • corePoolSize(线程池的基本大小):当提交一个任务到线程池时,线程池会创建一个线程来执行任务,即使其他空闲的基本线程能够执行新任务也会创建线程,等到需要执行的任务数大于线程池基本大小时就不再创建。如果调用了线程池的prestartAllCoreThreads方法,线程池会提前创建并启动所有基本线程。
  • runnableTaskQueue(任务队列):用于保存等待执行的任务的阻塞队列。可以选择以下几个阻塞队列。

    1. ArrayBlockingQueue:是一个基于数组结构的有界阻塞队列,此队列按 FIFO(先进先出)原则对元素进行排序。

    2. LinkedBlockingQueue:一个基于链表结构的阻塞队列,此队列按FIFO (先进先出) 排序元素,吞吐量通常要高于ArrayBlockingQueue。静态工厂方法Executors.newFixedThreadPool()使用了这个队列。

    3. SynchronousQueue:一个不存储元素的阻塞队列。每个插入操作必须等到另一个线程调用移除操作,否则插入操作一直处于阻塞状态,吞吐量通常要高于LinkedBlockingQueue,静态工厂方法Executors.newCachedThreadPool使用了这个队列。

    4. PriorityBlockingQueue:一个具有优先级得无限阻塞队列。
  • maximumPoolSize(线程池最大大小):线程池允许创建的最大线程数。如果队列满了,并且已创建的线程数小于最大线程数,则线程池会再创建新的线程执行任务。值得注意的是如果使用了无界的任务队列这个参数就没什么效果。
  • ThreadFactory:用于设置创建线程的工厂,可以通过线程工厂给每个创建出来的线程设置更有意义的名字,Debug和定位问题时非常又帮助。

  • RejectedExecutionHandler(饱和策略):当队列和线程池都满了,说明线程池处于饱和状态,那么必须采取一种策略处理提交的新任务。这个策略默认情况下是AbortPolicy,表示无法处理新任务时抛出异常。以下是JDK1.5提供的四种策略。n AbortPolicy:直接抛出异常。

  • keepAliveTime(线程活动保持时间):线程池的工作线程空闲后,保持存活的时间。所以如果任务很多,并且每个任务执行的时间比较短,可以调大这个时间,提高线程的利用率。

  • TimeUnit(线程活动保持时间的单位):可选的单位有天(DAYS),小时(HOURS),分钟(MINUTES),毫秒(MILLISECONDS),微秒(MICROSECONDS, 千分之一毫秒)和毫微秒(NANOSECONDS, 千分之一微秒)。

2 线程池的关闭

  • 调用线程池的shutdown

    1. 将线程池的状态设置成SHUTDOWN状态
    2. 中断所有没有正在执行任务的线程
  • 调用线程池的shutdownNow

    1. 遍历线程池中的工作线程,然后逐个调用线程的interrupt方法来中断线程
    2. 无法响应中断的任务可能永远无法终止
    3. 将线程池的状态设置成STOP,然后尝试停止所有的正在执行或暂停任务的线程,并返回等待执行任务的列表

线程池的分析

流程分析:线程池的主要工作流程如下图:
线程池分析

  1. 首先线程池判断基本线程池是否已满?没满,创建一个工作线程来执行任务。满了,则进入下个流程。
  2. 其次线程池判断工作队列是否已满?没满,则将新提交的任务存储在工作队列里。满了,则进入下个流程。
  3. 最后线程池判断整个线程池是否已满?没满,则创建一个新的工作线程来执行任务,满了,则交给饱和策略来处理这个任务。

合理的配置线程池

要想合理的配置线程池,就必须首先分析任务特性

  1. 任务的性质:CPU密集型任务,IO密集型任务和混合型任务。
  2. 任务的优先级:高,中和低。
  3. 任务的执行时间:长,中和短。
  4. 任务的依赖性:是否依赖其他系统资源,如数据库连接。

1 任务的性质

  • CPU密集型任务

    要进行大量的计算,消耗CPU资源,比如计算圆周率、对视频进行高清解码等等,全靠CPU的运算能力。

    任务越多,花在任务切换的时间就越多,CPU执行任务的效率就越低

    配置尽可能少的线程数量,如配置Ncpu+1个线程的线程池

  • IO密集型任务

    涉及到网络、磁盘IO的任务都是IO密集型任务,这类任务的特点是CPU消耗很少,任务的大部分时间都在等待IO操作完成

    等待IO操作,线程并不是一直在执行任务,则配置尽可能多的线程,如2*Ncpu。

  • 混合型的任务

    如果两个任务执行的时间相差不是太大,可以拆分成CPU密集型任务和一个IO密集型任务

    并行执行的吞吐率要高于串行执行的吞吐率

2 任务的优先级

  • 使用优先级队列PriorityBlockingQueue

    它可以让优先级高的任务先得到执行,需要注意的是如果一直有优先级高的任务提交到队列里,那么优先级低的任务可能永远不能执行。

3 任务的执行时间

  • 执行时间不同的任务可以交给不同规模的线程池来处理,或者也可以使用优先级队列,让执行时间短的任务先执行。

4 任务的依赖性

  • 依赖数据库连接池的任务,因为线程提交SQL后需要等待数据库返回结果,如果等待的时间越长CPU空闲时间就越长,那么线程数应该设置越大,这样才能更好的利用CPU。

线程池的监控

通过线程池提供的参数进行监控。线程池里有一些属性在监控线程池的时候可以使用

  1. taskCount:线程池需要执行的任务数量。

  2. completedTaskCount:线程池在运行过程中已完成的任务数量。小于或等于taskCount。

  3. largestPoolSize:线程池曾经创建过的最大线程数量。通过这个数据可以知道线程池是否满过。如等于线程池的最大大小,则表示线程池曾经满了。

  4. getPoolSize:线程池的线程数量。如果线程池不销毁的话,池里的线程不会自动销毁,所以这个大小只增不减。

  5. getActiveCount:获取活动的线程数。

扩展线程池

通过继承线程池并重写线程池的beforeExecute,afterExecute和terminated方法,我们可以在任务执行前,执行后和线程池关闭前干一些事情。如监控任务的平均执行时间,最大执行时间和最小执行时间等。